
Add: HeBei ShengShi HongBang Cellulose Technology CO.,LTD.


CONTACT US
+86 13180486930
Polypropylene fiber ( PP fiber ) has transformed the synthetic fiber market with its remarkable technical properties, cost-performance ratio, and exceptional durability in multiple industries. Discover in-depth analysis, technical data, production detail, and real-world application cases in this complete guide. Polypropylene Fiber: Industry Overview & Market Trends Polypropylene fiber is a synthetic fiber made from polypropylene polymers, renowned for its low density, high strength-to-weight ratio, exceptional chemical resistance, and versatile use in construction, geotextiles, filtration, and automotive sectors. The global polypropylene fibre market reached $11.8 billion in 2023 (source: Grand View Research), with an expected CAGR of 7.4% from 2024 to 2030, driven largely by rising demand in pp fiber concrete for infrastructural projects and high-performance composites. Increasing attention to energy-efficiency, corrosion resistance, and lifecycle performance in civil works, petrochemical, and water infrastructure boosts polypropylene fiber usage. Leading organizations, like ASTM, ISO, and FDA, continually update standards ensuring the safety, performance, and sustainability of polypropylene fibre products. Technical leader: Microfiber synthetic PP fiber, enabling ultra-fine reinforcement in concrete and mortar. Certifications: Most products adhere to ISO 9001 (Quality), ISO 14001 (Environmental), and ASTM C1116 (Concrete admixtures). Key markets: Construction, geosynthetics, automotive, filtration, fire protection. Global players: Sika, Adfil, Fiber Mesh, BHP New Material ( product link ). Technical Parameters & Specifications Table Here’s a consolidated table comparing core properties of mainstream polypropylene fiber products, including PP fiber concrete grade and microfiber synthetic types. Parameter Polypropylene Fiber (General) PP Fiber Concrete Grade Microfiber Synthetic Polyester Fiber (for comparison) Raw Material 100% Polypropylene 100% Polypropylene (Special Grade) 100% Polypropylene (Micro Denier) 100% PET Diameter (μm) 18–25 ≥20 6–18 15–25 Length (mm) 6–54 12, 19, 38 3–18 6–54 Tensile Strength (MPa) 400–570 ≥500 430–650 400–600 Elongation at Break (%) 15–25 18–24 10–22 18–25 Melting Point (°C) 160–170 160–165 160–170 254 Density (g/cm³) 0.91 0.91 0.91 1.38 Chemical Resistance Excellent Excellent Excellent Fair Water Absorption (%) <0.01 <0.01 <0.01 0.4 UV Stability Good Good Excellent Good Standard Compliance ISO, ASTM, ANSI ISO, ASTM C1116 ISO, EN ISO, ASTM Technical Data Visualizations Manufacturing Process: Polypropylene Fiber The manufacturing of polypropylene fiber involves advanced steps and strict process controls, ensuring consistency, purity, and top-tier mechanical properties. Below is a stepwise process visualization and concise explanation. Polymerization of Propylene Refined propylene gas is catalyzed into PP resin (iso tactic for high performance), per ISO 22007 standards. → Extrusion & Spinning Melted PP resin extruded through spinnerets to form multi-filament strands . → Drawing & Orientation Fiber is stretched for increased tensile strength, targeting optimal crystallinity per ASTM D2256. → Cutting/Forming Fibers are cut to spec length (6–54mm) and optionally crimped for better dispersion in concrete. → Finishing & Quality Test Surface coated or uncoated as needed. Strict tests: tensile, elongation, alkali resistance (in-house & third-party labs ). Compliance: ISO 9001:2015 . → Packaging and Shipping Automated weighing & packing. Supply to construction, infrastructure, water treatment, metallurgy, & more. Highlight: ISO/ASTM certified polypropylene fiber demonstrates >95% batch uniformity , lifespan exceeding 50 years in non-UV-exposed concrete, and is 100% recyclable. Key Advantages of Polypropylene Fiber Excellent Strength-to-Weight Ratio: PP fiber is among the strongest fibers by mass; perfect for lightweight, high-toughness composites. Superior Chemical Stability: Non-reactive in concrete, aggressive soil, wastewater, sea water, and most acid/alkali exposures. Low Water Absorption: Near-zero uptake ensures dimensional stability; ideal for humid/coastal construction. Exceptional Durability: Passes ASTM C1116/C1399 for crack control and toughening in concrete applications. Thermal Stability: Melting point up to 170°C; outperforms many cellulosic and even some synthetic alternatives under heat shock. Non-Toxic & Safe: FDA/ISO certified for use in potable water systems, hygiene applications, and food packaging (with test reports). Microfiber Synthetic Advantage: Ultrafine filament achieves 3D mesh in concrete/mortar, dramatically reducing plastic shrinkage cracks. Application Scenarios of Polypropylene Fiber The versatility of polypropylene fiber ensures solutions across multiple sectors. Here are the most common and demanding application scenes: PP Fiber Concrete: Embedded in precast, ready-mixed, and sprayed concrete; crack control, freeze–thaw durability, blast/spalling resistance (conforms to ASTM C1609). Geotextiles & Geosynthetics: Soil stabilization, roadbeds, erosion control, landfill covers—proven lifetime >30 years, compliant with ISO 10319. Industrial Filtration: PP microfibers for high-efficiency filters in water treatment, chemical, or food processing—meets FDA/ISO 16890. Automotive & Composites: Car interior fabrics, trunk liners, composite reinforcement (weight savings: 23–40%). Civil Infrastructure: Water supply/sewage, chemical plant lining, anti-microbial barriers (due to zero-nutrient surface chemistry). Fire Protection: Microfiber PP fiber used in tunnel/metro concrete for explosive spalling resistance (endorsed by NFPA & ITA-AITES). Case Study: BHP Polypropylene Fiber in Metro Tunnel Engineering In 2023, Shanghai Metro Line 15 adopted high-toughness polypropylene fiber supplied by BHP New Material to enhance fireproof concrete segment linings. Key metrics post-curing were: Dosage: 1.8kg/m³ (fibers chopped 18mm, 19μm diameter, 570MPa strength). Test Results (SGS Lab): Plastic shrinkage reduction: 67%. Residual flexural strength after fire: +38% vs. control. No explosive spalling after 2h @1200°C. Concrete Durability: Projected service life: 50+ years, backed by ISO 9001/14001 documentation. Customer Feedback: "Seamless integration, zero fiber balling, and passed all local & international acceptance checks." – Shanghai Construction Group (Feb 2024) Polypropylene Fiber Product Solutions & Customization Standard Range: Virgin PP fiber (6–54mm), micro/mono/macro types, bundled or loose forms, suitable for concrete or nonwoven. Tailored Solutions: Custom diameter (6–25μm), length (3–54mm), multi-filament composite, hydrophobic/hydrophilic surface treatment. Reinforced Grades: Enhanced modulus – up to 17GPa for geosynthetics or bridge decks. Colored & Anti-UV Fiber: For visible construction joints or outdoor geo-applications with minimum UV degradation. Logistics & Support: Rapid global sample, third-party test certificate (SGS, TUV, BV available on request), technical on-site support. Order Cycle: Standard delivery: 7–12 working days (FCL/LCL), expedited options available for urgent projects. Warranty & Service: Quality compliance and material consistency guaranteed for 10+ years; full technical support; rapid claim response within 24h. Manufacturers & Global Supplier Comparison Manufacturer Main Product Certifications Noted Strength Customization Service Regions BHP New Material [link] PP micro/macro fiber, Pre-mixed PP reinforced concrete ISO 9001, ISO 14001, ASTM C1116, SGS 570MPa, anti-corrosive, high batch uniformity Yes: diameter, length, color, hydrophobic/UV options Global (50+ countries) Sika SikaFiber, Macro/Mono PP Fiber ISO, EN, ASTM C1399 Up to 560MPa Length, Type Global Adfil Construction Fibers Crackstop Micro, Macro Synth ISO, EN, CE 520MPa (macro), low-odor Diameter, length EU/Asia Fiber Mesh 100% PP Microfibers ASTM, ISO 500+ MPa, easy dispersion Length, bundle size USA, Global Professional FAQ: Polypropylene Fiber Q1: What material is polypropylene fiber made from? A1: 100% virgin polypropylene (C3H6)n; typically isotactic, which ensures high mechanical and chemical stability. Q2: What are standard specifications for pp fiber in concrete? A2: Fiber diameter: 20–25μm, length: 12, 18, or 38mm, modulus: 3.5–7 GPa, recommended dosage: 0.9–2.7kg/m³, per ASTM C1116. Q3: Which international standards apply to polypropylene fibre products? A3: Main standards: ISO 9001/14001 (quality/env), ASTM C1116/C1399 (concrete), EN 14889–2:2006 (fibers for concrete), FDA (food contact/hygiene). Q4: What is microfiber synthetic PP fiber and its application? A4: Ultra-fine PP fiber (diameter 6–12μm), provides 3D crack-control mesh in concrete/mortar, especially for tunnels, floors, and fire-resistant linings. Q5: How is installation performed for pp fiber concrete ? A5: Fibers are dry-blended into cement or aggregate prior to water addition; homogenous dispersion is critical for maximum crack resistance. Compatible with normal mixing and pumping equipment. Q6: What quality tests are required for each batch? A6: Tensile/elongation (ASTM D2256), alkali/acid resistance, batch uniformity, UV resistance (if required), and concrete mix tests per ASTM C1116. Q7: What is the typical shelf life and storage condition for polypropylene fiber ? A7: Over 5 years in dry, UV-protected storage; 100% recyclability, retains >95% properties post 1 year if stored below 50°C and <80% RH. Conclusion: Advanced PP Fiber, Trusted by Industry Polypropylene fiber is a material of choice for high-stress, high-durability, and safety-critical applications in today’s engineering world. Its technical superiority—shown in comparative charts and independent lab test data—ensures that engineers, builders, and manufacturers can rely on its performance for years to come. BHP New Material, holding ISO , ASTM , and FDA compliance, delivers not just standard products but collaborative R&D for custom solutions in every major market. "As fiber-modified concretes rise in infrastructure, PP fiber consistently delivers optimal economic and mechanical performance. Field trials corroborate its dominance over steel and glass alternatives in marine, tunnel, and geotextile applications." — Source: Eng-Tips Civil Engineering Forum: Polypropylene Fibers in Concrete ; Journal of Advanced Concrete Technology Vol. 22 (2023), "Synthetic Fiber Reinforced Concrete—A Review" . Visit BHP Polypropylene Fiber official page for full documentation & support >>

Production

Experience

Acreage
Different Types of Synthetic Fibers Synthetic fibers have revolutionized the textile industry since their inception in the early 20th century. These man-made materials, derived from chemical processes or petroleum products, have become indispensable due to their unique properties, versatility, and cost-effectiveness. In this article, we will explore the different types of synthetic fibers, highlighting their characteristics, uses, and contributions to various industries. 1. Polyester One of the most widely used synthetic fibers is polyester, which is known for its strength, durability, and resistance to shrinking and stretching. Polyester is commonly produced from polyethylene terephthalate (PET) and is often blended with natural fibers like cotton to enhance fabric performance. Its low moisture absorbance makes it an excellent choice for athletic wear, outdoor clothing, and home textiles such as curtains and upholstery. Additionally, polyester is easy to wash and dries quickly, further contributing to its popularity in the fashion industry. 2. Nylon Developed in the 1930s, nylon was the first synthetic fiber made entirely from petrochemicals. Known for its remarkable elasticity and resilience, nylon is often used in products requiring high strength, such as fishing lines, ropes, and tire cords. In the apparel sector, nylon is favored for its lightweight qualities and ability to dry quickly, making it ideal for activewear and swimwear. Furthermore, nylon can be produced in various textures and finishes, enabling its application in a wide range of clothing and accessories. 3. Acrylic Acrylic fibers, often used as substitutes for wool, are known for their lightweight and warmth. They are created from polymers of acrylonitrile and possess excellent colorfastness, meaning they retain their color even after extensive washing. Acrylic is commonly found in sweaters, blankets, and upholstery fabrics. Although they mimic the feel of natural wool, acrylic fibers are often more affordable and easier to care for, making them a popular choice for both consumers and manufacturers. different types of synthetic fibers 4. Spandex Spandex, also known as elastane, is a synthetic fiber celebrated for its exceptional elasticity. Typically composed of a polymer called polyurethane, spandex can stretch up to five times its original length. This characteristic makes it an ideal component in garments requiring flexibility, such as athletic apparel, swimwear, and undergarments. Often blended with other fibers, spandex enhances fit and comfort while providing support and shape retention. 5. Rayon Though technically derived from natural materials, rayon is classified as a semi-synthetic fiber due to chemical processing. Made from regenerated cellulose, rayon exhibits similar characteristics to silk, making it a popular choice for affordable luxury fabrics. Rayon drapes beautifully and has excellent breathability, making it suitable for summer clothing, dresses, and linings. However, rayon's susceptibility to wrinkling and moisture absorption requires careful handling during washing and drying. 6. Olefin Olefin fibers, also known as polypropylene fibers, are notable for their high resistance to moisture, stains, and mildew. This makes them an excellent choice for outdoor furniture, carpets, and automotive interiors. Olefin is lightweight and has good thermal insulation properties, which can be advantageous in clothing designed for colder climates. However, olefin can be less colorfast than other synthetic fibers, which may affect its use in fashion applications. Conclusion The development of synthetic fibers has not only expanded the range of available materials in the textile industry but has also provided innovative solutions across various sectors. Each type of synthetic fiber offers distinct advantages, catering to different consumer needs and preferences. From polyester and nylon's durability to spandex's elasticity, synthetic fibers continue to play a vital role in modern manufacturing and fashion. As technology advances, the potential for new types of synthetic fibers will likely continue to emerge, further enhancing the versatility and capabilities of textiles worldwide.
Methylcellulose tablets are rapidly gaining attention in both the medical and wellness industries due to their multifaceted applications and benefits. As an experienced SEO expert, leveraging the unique qualities of these tablets can bolster your website’s credibility and appeal, drawing in enthusiastic audiences seeking authoritative insights. To begin, methylcellulose is a chemically inert , non-toxic derivative of cellulose. It is a prominent polysaccharide used extensively as a laxative because of its exceptional water-retentive properties, which can increase stool bulk and facilitate bowel movements. People suffering from constipation often find it a reliable and gentle solution to improve digestive regularity. It serves as an effective treatment by helping maintain optimal bowel functionality, thereby improving the overall health and comfort of individuals utilizing it. Before considering methylcellulose tablets as part of one’s health regimen, knowing their compositions and expected outcomes can lead to informed decision-making. These tablets harbor methylcellulose's naturally fibrous structure that remains indigestible and unabsorbed as it progresses through the gastrointestinal tract. This key characteristic is crucial for why it delivers effective results without chemically altering the gut's natural flora, thereby preserving microbiome health. Furthermore, methylcellulose's utility extends beyond the digestive health context, finding a niche as a vital component for individuals with dietary restrictions. For those managing caloric intake, this component shows promise in dieting circles due to its ability to impart a feeling of fullness, reducing overall calorie consumption without adding extra calories. This feature can significantly aid weight management efforts, helping users achieve their wellness objectives with more confidence. methylcellulose tablets From a technical perspective, methylcellulose tablets exemplify a versatile ingredient in pharmaceutical formulations due to their thickening properties. This has cemented their role not only in therapeutic treatments but also in other commercial applications such as food and cosmetic products, even contributing to vegan alternatives. Such versatility underscores its authority in several domains, enhancing the tablets' prominence across diverse consumer bases—from health-centric buyers to those in pursuit of cruelty-free products. Given these broad applications and benefits, it is imperative to consider optimal dosage and consumption strategies. Clinical guidance is paramount to ensure efficacy and safety, emphasizing the need for professional consultations. Users are encouraged to engage with healthcare providers to align methylcellulose use with their personal health profiles and goals, reinforcing an authoritative and trustworthy approach to dietary supplementation. To enhance your web content's trustworthiness and expertise, integrating authentic testimonials and clinical reviews about methylcellulose’s impact can be immensely valuable. Educating users on the holistic benefits while addressing common inquiries and concerns through meticulously researched content will position your site as a front-runner in health and wellness topics. Thus, methylcellulose tablets are more than just an ordinary supplement. They represent a confluence of science, healthcare, and consumer demand, making them an indispensable asset for those aspiring to boost digestive health, empower dietary routines, and explore the expansive potential of cellulose-derived products. Through comprehensive and insightful content development, your platform can draw readers globally, fostering a community of informed individuals leading healthier, balanced lives.
200000 Viscosities
Excellent product
We can produce pure products up to 200,000 viscosities
40000 tons
High yield
We don’t stop production all year round, and the annual output can reach 40,000 tons
24 hours
Quality service
We provide 24-hours online reception service, welcome to consult at any time
———— Inquiry Form
Schedule A services
Oct . 25, 2025
Oct . 25, 2025
Oct . 25, 2025